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ASYMPTOTIC THEORY OF THE SPREADING OF PARTIALLY WETTING LIQUID 

K. B. Pavlov, A. S. Romanov, and A. P. Shakhorin UDC 541.24 

A mathematical model of the spreading of liquid along a plane solid surface is 
constituted for a finite equilibrium angle of wetting. 

There is presently no closed consistent method of describing the spreading of a partially 
wetting liquid along a dry surface by methods of continuum mechanics. The basic reason for 
this is the incompatibility of the equations of motion of the viscous liquid and the adhesion 
conditions at a solid surface close to the line of three-phase contact [I, 2]. 

In [}, 5], it was proposed to resolve this contradiction by specifying the slip of the 
spreading liquid relative to the solid surface. However, the reason for the appearance of 
the contact angle 8 and its dependence on the velocity of motion of the line of three-phase 
contact remains unclear here. 

In [6, 7], it was proposed to reject any consideration of the liquid-film motion at small 
thicknesses h < hm, h m % 10 -l~ m close to the film boundary, because of the inapplicability of 
the hypotheses of continuum mechanics there. In this case, the corresponding boundary prob- 
lem is unclosed, since the angle of slope of the free surface 8(hm} and the ve!ocity of motion 
of the film boundary are specified quantities. 

It was noted in [8, 9] that the reason for the formation of a contact angle is the addi- 
tional "splitting" pressure arising in thin liquid layers on account of the action of Van der 
Waals forces. Van der Waals forces are diffuse in character, and appear at distances of the 
order of s % 10-6-10 -7 m, s >> h m. Therefore, the action of the splitting pressure may be 
included in the hydrodynamic description of the spreading of liquid films. Analysis of the 
correspondingly modified equations of liquid-film motion may be formally extended into the 
region h < h m up to the film boundary h + +0 [6, i0]. 
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In isothermal conditions, for an incompressible liquid, the splitting pressure may be re- 
garded as equal to the chemical potential of molecular interaction of the liquid F per unit 
volume [ii]. In [12, 13], for a two-point molecular interaction potential, under the assump- 
tion of conservation of homogeneity of the molecular structure of the liquid film, an expres- 
sion is obtained for the chemical potential at the film surface F0 close to the contact line 

F0 = h-3G(s) (I) 

where s is the angle of inclination of the film to the plane solid surface. A fundamental 
feature of the function G(s) is that it vanishes when s = s0: G(s 0) = 0. In [12, 13], it was 
noted that it is natural to identify the angle a 0 with the wetting angle: ~0 = O. Here it 
must be noted that a more complex dependence of the splitting pressure on the film thickness 
h is seen experimentally [14, 15]. Therefore, generally speaking, it must be assumed that 
G = G(=, h). 

Taking account of the chemical potential F in the equations of motion allows the problem 
of the spreading of a partially wetting liquid to be formulated in closed consistent form. 
However, the formal extension of the hydromechanics equations to the region h < h m implies 
neglecting processes that are significantly kinetic in character. The role of these pro- 
cesses may be taken into account in formulating the boundary conditions for the hydrodynamic 
equations of a liquid film. In particular, the surface diffusion of liquid molecules may be 
taken into account by specifying the rate of slip of the liquid film U relative to the solid 
surface. 

The asymptotic behavior of liquid-film flow close to the line of three-phase contact 
(h + 0) is considered below, taking account of the chemical potential F and the slip, rate U. 

i. Derivation of Asymptotic Equations of the Form 
of the Liquid Film 

In the approximation of lubricanttheory [16], the system of equations describing the one- 
dimensional spreding of a liquid film along a horizontal solid surface takes the form 

O(P--bF) Oau . O(P+F)  Ou Ov = 0 .  (2 )  
Ox --~ Oy ~ ' Oy = - - P g ;  '~--x --}- Oy 

To the system in Eq. (2) must be added conditions at the free surface of the liquid, 
specified by the relation y = h(x, t), and at the solid surface y = 0 

�9 02h Ou Oh Oh = v ;  P - - P o = - - ( J  " ~ = 0  when y = h ( x ,  t), (3 )  
Ot + u Ox Ox 2 '  Oy 

U ~  U; D = O w h e n  y = O. 

The slip rate U is determined by the properties of the solid-surface material and of the value 
of the surface diffusion coefficient. In the first approximation, it may be assumed that [13] 

U = D  O(P+F)ox u=o'  D = c o n s t .  (4 )  

A differential equation defining the surface of the liquid film follows from Eqs. (2)-(4). 
In dimensionless form 

o, o { o+o])=o. 
ot e-g--gx (n3+sn)[Tx~ Ox Ox 

Here q(x, t) is the film thickness; x, t are the dimensionless coordinate and time; ~0(q, D~/ 
8x) is the chemical potential at the free surface of the film; S = const is a dimensionless 
parameters proportional to the slip rate. In writing Eq. (5), the folowing characteristic 
quantities are taken: L = (~o/pg) as the length, and T = 3~L/o as the time. 

The function G(=) in Eq. (i) is fairly complex in form [12, 13]. For qualitative analy- 
sis, the asymptote of the function G(~) as ~ + 8 is written in the form G(~) % (8 2 - ~2). 
Taking into account that s % 8n/Sx; ~2 << I in the approximation of Eq. (2), the following 
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representation of #0(q, aq/ax) is obtained: @0 = R~ -3 

If x = xf(t) is the position of the film boundary 
the following conditions must hold when x = xf(t) 

I 

(the line of three-phase contact), then 

[0%1 a~l a~~ ] : ,o ,  x = xf(t), (6 )  
= o, (,1 ~ + s~)  [ ~ ax ax  

these are the boundary conditions for Eq. (5). The second condition in Eq. (6) denotes the 
absence of liquid flow rate through the film boundary x = xf(t). 

The conditions in Eq. (6) are inadequate for unique determination of the form of the 
liquid film from Eq. (5). On the basis of the hypothesis in [12, 13] (see also the introduc- 
tion, above), the closing boundary condition adopted is the relation 

( ~h2 = 0 2 when X :  Xf(t), (7) 
ax ) 

which  may be r e g a r d e d  a s  t h e  Y o u n g ' s  c o n d i t i o n  f o r  a p a r t i a l l y  w e t t i n g  l i q u i d .  

As i s  c l e a r  f r o m  f u r t h e r  a n a l y s i s  [ 1 7 ] ,  t h e  s o l u t i o n  o f  Eq. (5 )  s a t i s f y i n g  Eq. (7 )  i s  
t h e  o n l y  one  f o r  wh ich  t h e  d e r i v a t i v e s  8 q / a x  and  a 2 q / a x  2 a r e  f i n i t e  when x = x f ( t ) .  T h i s  
s o l u t i o n  when x = x f ( t )  a s y m p t o t i c a l l y  c o i n c i d e s  w i t h  t h e  s o l u t i o n  o f  t h e  e q u a t i o n  o b t a i n e d  
f r o m  Eq. ( 5 )  by o m i t t i n g  t h e  h i g h e s t  d e r i v a t i v e .  P h y s i c a l l y ,  t h i s  c o r r e s p o n d s  t o  n e g l e c t i n g  
t h e  a c t i o n  o f  s u r f a c e  t e n s i o n  a s  q § +0.  I t  i s  o f  f u n d a m e n t a l  i m p o r t a n c e  t h a t ,  i n  t h i s  a n a l y -  
s i s  o f  t h e  b o u n d a r y  c o n d i t i o n  i n  Eq. ( 7 ) ,  t h e r e  a r e  no d i f f i c u l t i e s  a s s o c i a t e d  w i t h  t h e  im- 
p o s s i b i l i t y  o f  4 n t r o d u c i n g  t h e  c o n c e p t  o f  s u r f a c e  t e n s i o n  a s  q + +0 [8 ,  9 ] .  

The f o r m  o f  Eq. (5 )  a s y m p t o t i c a l l y  v a l i d  a s  x + x f ( t )  i s  now f o u n d ,  u s i n g  t h e  method  o f  
[ 1 8 ] .  D i f f e r e n t i a t i n g  t h e  f i r s t  c o n d i t i o n  i n  Eq. (6 )  w i t h  r e s p e c t  t o  t ,  i t  i s  f ound  t h a t  

(s) on 0n =0, x=xt (  O, xs - d x l  
at s ~] ax dt 

Assuming that Eq. (8) is asymptotically valid as q + +0, x § xf(t), it is found, after 
replacing the derivative 8q/ax by the expressioninEq. (5) and integration of the resulting 
expression, taking account of the second condition in Eq. (6), that 

0% a~, + R ~  ,~-~ o~ + - - - o .  
L ~ ax, I I12 + S 

Here the coordinate x, ffi xf - x is measured from the boundary of the film inside the liquid. 
Note that, in the case of a simple wave, if = const, Eq. (9) is the accurate corollary of 
Eq. ( 5 ) .  

The two s m a l l  p a r a m e t e r s  R and S in  Eq. ( 9 )  may be e s t i m a t e d  in  t e r m s  o f  t h e  Van d e r  
Weals  i n t e r a c t i o n  c o n s t a n t  and t h e  s u r f a c e  d i f f u s i o n  c o e f f i c i e n t .  For  m o d e r a t e  v a l u e s  o f  
t h e  v i s c o s i t y  and s u r f a c e  t e n s i o n ,  i t  may be  f o u n d  t h a t  R, S ~ 10 -12 << 1. The r e g i o n  o f  
v a r i a t i o n  i n  f i l m  t h i c k n e s s  o f  i n t e r e s t  be low i s  t h a t  c l o s e  t o  t h e  l i n e  o f  t h r e e - p h a s e  
c o n t a c t  xv ++43,  q § +0,  in  which  t h e  r o l e  o f  t h e  s p l i t t i n g  p r e s s u r e  and s l i p  i s  s i g n i f i c a n t .  
To d e t e r m i n e  t h e  r e l a t i v e  r o l e  o f  t h e  t e r m s  in  Eq. (8 )  i n  t h i s  r e g i o n ,  t h e  new v a r i a b l e s  
6 = x , R - l / 2 ,  ~ = qR-1 /2  a r e  i n t r o d u c e d .  Then f r o m  Eq. ( 9 ) ,  n e g l e c t i n g  q u a n t i t i e s  o f  t h e  
o r d e r  O(R) ,  t h e  f o l l o w i n g  e q u a l t i o n  i s  o b t a i n e d  

0 

where  ~ = S/R ~ 1. E q u a t i o n  ( 1 0 )  i s  t h e  d e s i r e d  a s y m p t o t i c  f o r m  o f  Eq. ( 5 ) .  The i n d e p e n d e n t  
v a r i a b l e  6 i s  an i n t e r n a l  v a r i a b l e  [19]  f o r  t h e  g i v e n  s m a l l  r e g i o n  o f  t h e  f i l m .  The s o l u t i o n  
o f  Eq. (10 )  when 6 >> 1 mus t  be  m a t h c e d  w i t h  t h e  s o l u t i o n  o f  Eq. ( 5 ) .  Assuming  t h a t  t h e  
c u r v a t u r e  o f  t h e  f i l m  s u r f a c e  a 2 q / a x  2 = 0 (1) f a r  f r o m  t h e  f i l m  b o u n d a r y  x ,  ~ 1, t h e  d e r i v a t i v e  
a2~/86  = m u s t  be  o f  o r d e r  O(RX/2) << 1 when 6 >> 1. T h e r e f o r e ,  f o l l o w i n g  t h e  g e n e r a l  scheme 
f o r  c o n s t r u c t i n g  a s y m p t o t i c  r e p r e s e n t a t i o n s  [ 1 9 ] ,  t h e  f o l l o w i n g  c o n d i t i o n  mus t  be  added  t o  
Eq. (10)  i n  t h e  f i r s t  a p p r o x i m a t i o n  
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a2~ ~-- 0 when ~ = OO ( 1 i) 
08 z 

Together with the boundary conditions in Eqs. (7) and (ii) and the first condition in 
Eq. (6), Eq. (i0) asymptotically completely determines the form of the liquid film as a func- 
tion of the rate of spreading xf and the parameter < characterizing the slip rate of the 
liquid at the solid surface. 

2. Construction and Analysis of Integral Curves 

It is expedient, for purposes of analytical and numerical analysis, to reduce the order 
to Eq. (i0) by introducing the new variable z = (8~/86) = - 82 and to regard the film thick- 
ness ~ as an independent varible. Then Eq. (i0) is rewritten in the form 

21 Og 202z ~ ~0 z +. I(~ 2 + • t / 1 + z/02 1-1 = O. ( 1 2 )  

Equation (12) must be considered together with the boundary conditions 

Z = 0 when ~ = 0, (13) 

OZz 
= 0 when ~= co, (14) 

08 z 

which are a consequence of the conditions in Eqs. (6), (7), and (ii). 

As is evident, the point ~ = 0 is a singular point for Eq. (12). 
it is found that 

Integrating Eq. (12), 

1 az z xl i T o-T+F-+T V r,a = C. 
(15) 

Here C is a constant of integration. If it is now assumed that z > -92 at least when ~ + 0, 
the integral in Eq. (15) may be neglected in comparison with the constant of integration C 
as ~ + 0. Then, Eq. (15) yields a form of Eq. (12) that is asymptotically valid as ~ ~ 0 
and when z > --82: 

This equation is linear. 

1 Oz _ _ + z  C. 
2 O~ ~8 

Its general solution is written in the form 

(16) z=  2C exp(~ -z) ~-[.[ exp (--8 2) d8 +C,  ] .  
o 

Here C z is the constant of integration. It follows from Eq. (16) that, if the function z(~) 
is assumed to be finite, there is only a single-parameter family of integral curves passing 
through the point ~ = 0 corresponding to C I = 0. The boundary condition in Eq. (13) is 
satisfied here, i.e., as noted above, it is equivalent to the requirement of finiteness of 
z(~) as ~ + 0. The constant C is chosen from the condition in Eq. (14). Integration by parts 
of Eq. (16) shows that z ~ C~ s as ~ + 0. This asymptotic representation may be improved 
directly on the basis of Eq. (12), assuming that 

N 
z~%S ~ a~ i, ~ 0 ,  (17) 

where N is some natural number. Substituting Eq. (17) into Eq. (12), it is found that 
~to=~ al=~y/Ou, a2=--3C/2, as=~f(1/3+2•215 Where necessary, the series in 
Eq. (17) may be extended, but it is practically impossible to use this ser~es, for the calcu- 
lation of z(~) when ~ >> i. Therefore, to construct the integral curve of Eq. (12) satisfying 
the conditions in Eqs. (13) and (14), Eq. (12) is integrated numerically by the Runge-Kutta 
methoff using a scheme of fourth-order accuracy with a variable step. The initial value of 
z(~) is chosen on the basis of Eq. (17) for g = 0.i. 
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z-/O e ~ cu 103 

g s 

F i g . .  1 .  ~ I n t e g r a i  c u r v e s  and  d e r i v a t i v e s  
f o r  K = 1 and  x f  = 5 " 1 0  -4  ( 1 ) ,  9 " 1 0  -4  ( 2 ) ,  
and  1 3 - 1 0  -4  ( 3 ) .  

I .... I 

o @- ,Io .~.ro ~ 

Fig. 2. Angle of slope B for ~ = 1/3 (curve i) and < = 
3 (curve 2). 

Calculations show for the spreading of liquid on a solid surface xf > 0 that the condi- 
tion 6 § ~ corresponds to $ + ~; see also [6, 7], The constant C is determined by the 
ranging method from the condition in Eq. (14), satisfaction of which is required when $ 
i00 >> i. In Fig. i, the resulting integral curves are shown in semilogarithmic coordinates, 
together with the dependence of the derivative ~ = dz/d$. Analysis of the numerical results 
obtained shows that, close to the boundary of the spreading film ~ = 0 there is a thin tran- 
sition layer, surface curvature of the film in which reaches considerable values. The 
maximum curvature corresponds to $ ~ i. Correspondingly, the angle of slope of the film 
surface within the limits of this narrow layer undergoes a sharp discontinuity, the magnitude 
of which depends on the spreading rate xf and the parameter ~. 

The dependence of the increment in the angle of slope B = 8~/8x - 8 when ~ = $0 = 20 on 
the rate xf is shown in Fig. 2. 

Note here that the dimensionless thickness of the film ~= Sv~. Setting R = 10 -12 gives 
NG = 2"10-5 << 1 for ~0 = 20. The corresponding dimensional thickness of the film h0 = 
(o/pg)~/2~o; for example, for water at normal teml~r, ature , h 0 = 5.3-i0 -s m. As is evident, 
the angle ~ increases nonlinearly with increase in xf, in qualitative agreement with experi- 
mental data [i]. The characteristics of the variation in angle of slope of the film surface 
observed experimentally may be regarded as the existence of a dynamic angle of wetting depend- 
ing on the rate of spreading [i, 8, 9]. 

At large values of $, the dependence z($) is near-logarithmic, in complete agreement with 
the conclusions of [6, 7] (Fig. i). In our view, the theory developed in [6, 7] and else- 
where requires refinement in the determination of the minimum film thickness h m at which the 
integration of the equations of motion of the spreading liquid begins. Evidently, hmmust 
be replaced here by h*, defining the limit of action of the splitting pressure, and the angle 

�9 m j 
of slope of the f11m surface at h = h ~ may be specified on the basis of asymptotic analysis 
analogous to that performed here. m 

As follows from Figs. 1 and 2 and the asymptotic representations here constructed, the 
angle of slope of the film of the film surface is practically the same as the wetting angle 
% when xf + 0, over the whole extent of the given range of film thickness; i.e., the solu- 
tion for a moving film transforms continuously into the solution for a motionless film z = 0. 
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Fig. 3. Dimensionless film thickness 
~, for K = i (curve i) and < = 0.i 
(curve 2). 

For the case of liquid displacement xf < 0, calculations by Eq. (12) show that the 
thickness of the liquid film is finite when Eq. (14) holds. Passing to the limit as 6 § 
in this case corresponds to g + ~, < ~. When ~ = ~,, the condition z(~,.o) = -8 2 holds, i.e., 
with liquid displacement xf < 0, a thin liquid film of constant thickness U = ~,, ~, = ~,v~ 
is formed at the solid surface. The thickness of the film remaining on the solid surface ~, 
is uniquely related to the rate of motion of the film boundary xf..The dependence of ~, on 
xf < 0 calculated from Eq. (12) is shown in Fig. 3. Note that, as xf + -43, the solution also 
transforms to the solution for a motionless film: z % 0. 

Thus, the given analysis shows that the hypothesis of [12, 13] allows the spreading of a 
film of partially wetting liquid over a dry surface to be described in closed consistent form. 
A completely definite interpretation of the Young's condition and the dynamic contact angle 
of wetting is obtained here. The form of the liquid film close to the line of three-phase 
contact is asymptotically completely detrmined by the rate xf. Determining ~f itself entails 
considering an evolutionary problem for the initial formof the liquid film, which falls out- 
side the scope of the asymptotic theory developed here. 

NOTATION 

P, pressure in liquid film; P0, external pressure; u, v, horizontal and vertical compo- 
nents of liquid velocity; ~, p dynamic viscosity and density of liquid; y, transverse coordi- 
nate; g, accelration due to gravity; % surface tension. 
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